
www.esprit-systems.de Rainer Buesch, Stuttgart Sept. 2016

Esprit Client/Server Technology

When we talk about “progress in networking“ then we talk about Esprit-technology . This
statement was made by the chief developer and architect of the INCA-Project at BGR
(Federal Institute for Geosciences and Natural Resources in Hannover, Germany). This institute
of the German government uses Esprit-software for more than 10 years for high challenging
scientific applications. They use it because it has unique features, which no other software
provides.

The client user interface may be implemented in any GUI-technology. This picture shows the
administration client for the Esprit-Server in a JavaFX implementation.

In contrast to other request/
response based client server
systems the Esprit software
fully realizes the Model-View-
Controller principle over net.
In practice this means: an
Esprit-server is able to notify its
clients instantaneously about

any change that might have
happened on its data.

Thus, all clients always have a
consistent up to date view of
the servers data – without
even issuing requests by their
own. This technical concept
opens a huge area of new
possible applications.
Client/server-computing has

practically been reinvented
with Esprit. It allows to realize

client/server systems in a
completely different design
and with yet unknown
dynamics. It's based on the
newest Java Technology and
it sets new standards in
flexibility, performance,
robustness, maintainability

and costs.

What’s unique though?

2

3

The Esprit Client/Server Concept

The concept is simple yet powerful: an Esprit-client connects to its server using a standing
double channel connection. The first channel is just a request/response channel as usual. The
second channel however is an instant-message channel, on which the client is listening for
server-messages. A message can be anything: just an update of data that have changed on
the server, but also a command that the server wants the client to execute. Thus, the server is
able to control its clients.

Á Request/Response channel for synchronous request/response

Á Instant-Message channel for receiving asynchronous messages of the server

Á Transfer channel (optional) for bidirectional transfer of mass-data

ÁWeb channel (optional) for downloading HTML documents or software-updates

Á Terminal channel (optional) for administering the server from a local terminal

Network Programming

All client/server communica-
tion is done via the Esprit SPI
(Server Programming Inter-
face). Using this is as simple as
programming against a
standard Java API with the
important difference, that
method-calls are actually
executed remotely on the

server. This technique makes
the network completely
invisible to the user.
SPI supports synchronous as
well as asynchronous remote
method calls. In the latter
case the client does not block
but instead receives the
response as a server-message.

In this way, one client may run
many asynchronous jobs on
the server in parallel.

SPI is simple yet powerful. It’s
extremely robust, easy to use
and easy to extend to
whatever client/server
functionality you need.

The Esprit Client/Server Concept

Model-View-Controller (MVC) over Net

This ability makes the Esprit-
system ideal for everything
that has to do with
observation, like vehicle
tracking , flow-control and
measuring. The BGR-
geologists for instance
simulate below-earth
movements, using the Esprit
system for controlling and
observing huge simulation
processes.

Remote Property Binding

A server can maintain any type of data (Objects, Lists, Maps) in so called server-properties . Any
change in these data will be notified to all clients that have accessed that particular server-
property. Thus, the client view is kept up to date fully automatically. Such properties are easy to
bind to GUI-components. This concept harmonizes perfectly with the property-binding
mechanisms recently introduced by JavaFX.

Down-Requests and Client-Commands

The Model -View -Controller principle is a
commonly used pattern in local application
user interfaces. Thanks to the instant -message
service of the Esprit-server this pattern is now
available over net, opening enormous
possibilities.
Let's consider for instance a tank -model ,
which exists exactly once on the server. When
a Controller -client changes the Model , then
the Esprit-server sends an update-message to

all clients, which will update their View
instantaneously - without issuing any
additional request by their own.
In this way, server and client achieve an
ever consistent view of data with an excellent
performance, because only delta-information
is passed. The old way of client -polling is a no-
go in the Esprit-world.

An Esprit-server can direct a
so called down -request to a
client – just changing the role
of who is the requestor and
who is the responder. Down-

requests are used in order to
get information from the
client at any time. But they
can also be used to give
orders to the client what to

do. For instance a server
might tell the client: I've got
some results for you, just come
and download them - or
whatever you can imagine...

4

This picture shows an automatically
generated input-form for a database
record. Clicking the lock-checkbox
prevents other users to edit the same
record.

This picture shows a real configuration with interconnected Esprit-servers. The install
server is used to keep the software of all involved systems automatically up to date.

The Esprit Client/Server Concept

Server Resource-Locks

Server-Networks

An Esprit-server may be by itself a client of one or several other Esprit-servers (co -client). So,
servers can be interconnected in complex networks. Requests may be passed from server to
server where they execute different codes on each of them, thus collecting data before being
sent back to the requesting client. Inter-server-connections are fail-safe: interruptions - due to
network failures - repare themselves as soon as the network is available again.

A server typically provides client-access to
different types of data, i. g. files or database
records. But if several clients want to change
that data at the same time, then the server
needs to synchronize this access in order to
prevent data corruption. The Esprit-server uses
so called resource-locks for this purpose. When
for instance a client holds an EXLUSIVE lock on
a file, then no other client will be able to
change it.
Locks are leased, which means they need to
be retriggered periodically in order to stay
alive. If this does not happen in time by
whatever reason, then the server will release
the lock automatically.
A client may also acquire a SHARED lock,
which means that the file cannot be deleted
by another client while locked. The concept of
resource-locks is a very flexible synchronization
mechanism which applies to any kind of data.

5

The Esprit Client/Server Concept

Transactional Data Transfer

Async-Task Framework and Workflows

One of the most powerful features of the Esprit-technology is its ability to handle all kinds of
asynchronous tasks. A set of such tasks composes a so called workflow , which defines a
procedure to be executed in a series. A workflow's execution is being monitored as shown in
the picture. You can observe how the executed steps are check-marked and how the progress
bar is moving.
A workflow may contain a mixture of tasks that execute locally at the client or remotely on the
server. It may include just everything that can “run”, such as OS-processes, file-transfers, stream-
downloads etc.
Although executing asynchronously a workflow can interact with the user whenever it needs
additional information or a user’s-decision. In the picture you see a step (?-icon) where the user
was asked for a decision which dynamically changed further processing by inserting an
additional task.

A sample workflow could be:

Á Start a CAD system on the client in order to
create input data

Á Transfer the input data to the central main-
server

Á Transfer the input data further to a

compute-server and start a simulation there

Á As simulation results appear transfer them to
the main-server

Á Download result data from the main-server
to the client

Á Start a CAD analysis tool on the client for
displaying the simulation results

The Esprit-server supports bidirectional
exchange of mass-data (huge files or file-sets)
between client and server. A data transfer
may happen synchronously or asynchronously
and it is transactional, which means: “all or
nothing”. The server uses a special port for

transfers so that it will not enter in conflict with
normal client-server operations. An additional
stream-download service allows for down-
streaming and processing data on the fly
which results in even better performance than
just copying files over the network.

6

The Esprit Client/Server Concept

Observing remote File Systems

“Observing” is Esprit's favorite
feature and one thing you
often want to observe is a
remote file system.
The picture shows a client-side
file-tree next to a file-tree on
the server. You easily can find
out differences and

exchange files to get both
sides consistent. User access
to server side files is controlled
by so called path -permissions.
A user can only do what he is
permitted to do.
Depending on his path-
permissions a user may only

perform certain actions or
even only see a part of the
tree. This system is ideal for
maintaining central project-
trees, where users with
different roles are acting on.

7

The Esprit Client/Server Concept

Team Communication

Server Background Processes

The Esprit-server supports scheduled background task execution (similar to UNIX cron).
Customers use this feature for nightly database updates or periodic data extraction. Like
everything else within Esprit such background tasks are observable for clients.

Persistency using Neutral Data Format (NDF)

The Neutral Data Format (NDF) is a file-format for storing and archiving any kind of textual data.
In contrast to XML it is really human readable and extremely compact with only a minimal
overhead of meta data. It supports all data structures known in information science such as
lists, tables, arrays and objects. Esprit provides a high performance writer and a parser for this
format. Especially the parser is highly tuned for processing mass-data and beats XML-parsing by
far as proven in a university-study.

@TABLE Groups {
 [gid groupName displayName comment]
 1 " guests" " Gäste" Ƨ(ÁÓ ÎÏ ÐÅÒÍÉÓÓÉÏÎÓʏ;
 2 " employees" " Mitarbeiter " " Has normal permissions " ;
 3 " administrators" " Administratoren " "Has all permissions " ;
}

This is an example for a table structure in NDF. This format is extremely compact, well
readable and can be parsed significantly faster than XML. In the Esprit-world this format
has fully replaced XML.

The built in instant-message-
service of the Esprit-server
makes it possible that users
can communicate directly
with each other. This is
extremely useful when for

example developers work in a
team on the same project.
Users may chat among each
others or maintain a common
task-list. The team leader may
send popup-messages to

particular users or a group of
users – you can realize all
types of communication you
need in order to increase the
team productivity.

8

The Esprit Client/Server Concept

Persistency using DBObjects

Every software developer knows how costly it is to map relational database records to Java
objects. Esprit's DBObjects do this automatically for you; a DBObject is is a Java-class which
represents a database record. It carries the information of the record and knows by itself how
to read/write its values from/to the database. DBObjects make the database persistency
transparent to the user, who does not need not know anything about SQL any more.

DBObject classes are automatically created by a special compiler, which reads the meta
information from the database system. So they are consistent with the actual database by
construction. Whenever a database table has been changed, you just need a recompile and
everything is consistent again within a few seconds. DBObjects are building blocks for
constructing composed persistent objects with higher complexity.

An Esprit-server manages an arbitrary amount of connections to databases even from different
vendors. Because DBObjects are compatible to all of them, you can easily exchange data
between them – of course with arbitrary logic in between.

Automatic Client-Installation with Esprit-AppStore

Esprit is not a web technology,
rather a good old rich-client-
technology. The latter one
has significant advantages
over web technologies, such
as better load balance
between client and server
and effectively unlimited

complexity at best possible
performance. The only
disadvantage has been until
now that you needed to
reinstall the client software
whenever the server software
has been upgraded. This
disadvantage has completely

disappeared due to the Esprit-
AppStore , which is doing this
job automatically under the
hood. An Esprit-server keeps
its clients up to date in all
aspects – even with software-
installation.

9

Custom Application Example 1

BGR

Bundesanstalt für Geowissenschaften und Rohstoffe

Federal Institute for Geosciences and Natural Resources www.bgr.bund.de

This institute of the German government in
Hannover uses Esprit-technology for executing
complex finite element calculations of
geologic systems, such as all kinds of below-
earth-movements. Workflows are used to
control distributed simulations on different
interconnected compute-servers. Clients

observe the simulation progress online by
receiving event notifications from the server.
This also includes the automatic transfer of
result data to the clients, so that the user can
already start analyzing them as soon as they
are available.

10

http://www.bgr.bund.de/

Custom Application Example 2

ISA-Telematics www.isatelematics.de

This company uses the Esprit-
concept in their telematic
system HiLocate , which allows
for online tracking of vehicles
on a virtual map. All vehicles
periodically send their position
information via SMS to a
central server which in turn
notifies its clients about the
vehicle movement. This
application has a huge set of
features: so you may enter a

follow-mode which
dynamically fits the view to
one or more vehicles.
Furthermore you can define
rules for vehicles such as
mandatory routes or
forbidden areas and you will
get an alarm notification if a
vehicle violates any limit. A
huge performance gain was
achieved by using parallel
processing on client and

server: by zooming to another
section of the map the server
will be calculating the new
map-view while at the same
time the client is processing
the layout and placement of
the flags which are used to
label a single vehicle or a
group of them.

11

http://www.isatelematics.de/

Custom Application Example 3

Hydro-Aluminiumwerke AG www.hydro.com

This enterprise in Hamburg uses Esprit-
technology to monitor production progress in
their aluminium rolling mill. Every table row
represents a work-place in the factory which
has been modeled as an Alive Business
Object (ABO). Such objects are kept up to
date automatically as the state of the work-

place changes. Another ABO is the walking
timeline on the bottom which gives a life
overview over the production process on the
whole. The red spots indicate problems with
certain production machines that require
manual interaction.

12

http://www.hydro.com/

Esprit Feature Overview

Á True client-sessions, based on a
double channel connection

Á Use Esprit SPI (Server Programming

Interface) for robust client/server

communication .

Á Support for synchronous and
asynchronous requests

Á Asynchronous messaging using
the Esprit instant message service

Á Model-View-Controller principle
is fully implemented over net

Á Support for local /remote tasks,
controlled and monitored by

workflow's

Á High performance file
persistency using NDF-format

Á High performance database
persistency using DBObjects

Á Support for transactional file
transfers and stream downloads

Á Support for resource-locks for
concurrency control

Á Ability to build server networks
using inter-server-connections

Á Time controlled background jobs
(cron like)

Á High sophisticated management
of users, groups and permissions

Á Support for server-to-client
down-requests. Server controls its

clients

Á Clients can directly
communicate among each
other

Á Life monitoring of server-
activity/statistics via terminal-
connection

Á Client may work in online- or
offline-mode as needed

Á Support for connecting to many
databases of different vendors
with direct data-exchange
between them

Á Multi-language support for client
GUIs

Á Automatic software
installation/upgrade via Esprit-
AppStore reduces maintenance

to zero

13

Your Advantage

Á For applications up to 1000 users
Esprit may be an excellent
alternative to a monstrous
application server

Á An Esprit-application may be a
suitable rich-client alternative to
a web application when
complexity raises

Á The Esprit client/server system is
build on top of a software
framework that contains
decades of experience

Á Esprit provides a sophisticated
concept for controlling and

monitoring remote processes

Á Esprit serves as a central place
for integrating all your tools

Á Esprit is implemented in newest
Java technology and runs on
any platform

Á Esprit applications have best

possible performance because
only delta-information is
exchanged between client and
server

Á Esprit applications have
excellent client/server load
balance. Others typically have a
high load on the server side

Á Old programs can relatively easy
be rewritten in Esprit-technology,

gaining client-server ability as a
spin-off

14

Advantages for developers

Á You only need to develop, what
you actually need - the network
remains hidden to you

Á You can develop client/server

functionality of highest
complexity and robustness

Á The source code of your project
remains clean, well readable,
testable and maintainable

Á Esprit software is extremely well
tested, mature and robust. You
won't loose much time with
debugging

Á Esprit software is easy to learn.
No special know-how is required
except standard Java

Á Esprit applications are extremely
compact and memory efficient –
only a few megabytes on the
whole.

Á Having the source code
available gives you safety and
independence – and you can
see how things are done

Á You need not include any
foreign software into your
project. The Esprit-software has
all you need

15

Conclusion

Esprit is a pure Java client/server framework for rich client support. The
Esprit-server's unique instant-message service allows for fully realizing the
model-view-controller principle over net. Therefore the server is capable to
keep all its clients up to date with its data – avoiding inconsistencies by

concept. Custom applications use this system mainly for observation such
as car tracking, measurement or process-management.

The German government (BGR) uses Esprit-software in safety critical
applications. Therefore it fulfills highest requirements in quality and
robustness. It has grown up within more than 15 years, has achieved a high
grade of maturity and is continuously being tested with high coverage.

For more information look at: www.esprit-systems.de

F
re

e
p

ik
 D

e
si

g
n

16

http://www.esprit-systems.de/
http://www.esprit-systems.de/
http://www.esprit-systems.de/

